The Application of a Novel Catalytic Membrane in Direct Methanol Fuel Cell

Abstract

在直接甲醇燃料電池中Nafion® 膜因有高甲醇穿透現象,會降低電池功率甚至產生CO毒化催化劑使電池失去作用。為使直接甲醇燃料電池更趨於實用化,許多的研究紛紛朝向減低穿透作用來進行。本研究中運用新型催化劑薄膜-薄膜修飾鉛釕黃綠石氧化物,進行減少甲醇穿透的測試。利用Nafion® 膜具有陽離子交換的特性,進行鉛釕雙離子之離子交換作用,最後製作出新型催化劑薄膜。在電化學循環伏安法的測試中,驗證修飾過後之薄膜對甲醇具有氧化作用,而鉛釕黃綠石氧化物合成在薄膜之中佔據部份的質子交換點,形成了阻擋作用。結合修飾過後薄膜的催化與阻擋功能,進行單電池測試時,操作溫度為50℃之下,在高甲醇濃度下電池功率比未修飾Nafion® 膜來的高,證明利用鉛釕黃綠石氧化物修飾Nafion® 膜,可以成功地減少甲醇穿透,使電池在高濃度甲醇時有更好的功率表現。Direct methanol fuel cells (DMFC) are typically very simple and efficient devices among the other renewable energy sources. In DMFC, methanol fuel is directly fed into the cell without any other pre-chemical treatment process. The crossover of the reactant from one electrode to another is undesirable, as it reduces the reactant's utilization efficiency and degrades the performance of the fuel cell. Since Nafion® membrane has high methanol permeability in DMFC, the development of new protocols to control the permeability is a challenging problem in this area. Recently, our group developed a stable and recyclable Nafion polymer anchored metal oxides for organic reactions. Lead ruthenate pyrochlore (Py, Pb2Ru2O6O') modified Nafion® membrane (|NPy|) was used for these reactions. The modified membrane was prepared by in-situ precipitation method using Ru3+ and Pb2+ ions in the presence of molecular O2 under alkaline condition at 53℃. The catalytic activity of this catalyst was first confirmed by electrochemical method using a lead ruthenate pyrochlore modified electrode for the oxidation of methanol. It showed a well defined oxidation peak in CV clearly indicating its catalytic behavior towards the methanol oxidation. The control of methanol crossover by using the lead ruthenate pyrochlore modified Nafion® membrane was conducted directly in the DMFC. The modified Nafion® membrane showed good response compared to that of a unmodified Nafion® membrane. In sum, the gradient lead ruthenate pyrochlore modified membrane has been proved as a efficient catalyst for controlling the methanol crossover in DMFC.目錄 IV 圖目錄 VI 表目錄 IX 第一章 前言 1 1-1 燃料電池起源與發展簡述 1 1-2 燃料電池種類 3 1-3 直接甲醇燃料電池 9 1-4 極化過程理論模式 14 1-4-1 活化極化 17 1-4-2 歐姆極化 21 1-4-3 濃度極化 21 第二章 文獻回顧 25 2-1 鉛釕黃綠石氧化物簡介 25 2-2實驗參數之參考文獻 33 2-2-1 陽極催化劑金屬成分組成比例 33 2-2-2 漿料溶劑選用 36 2-2-3 催化層中催化劑與Nafion比例 36 2-3 修飾Nafion膜文獻 39 第三章 實驗 41 3-1 實驗藥品 41 3-2 儀器 43 3-3 實驗流程 44 3-4 催化劑製備 46 3-5 催化劑特性分析 47 3-5-1 循環伏安法催化劑性能測試 47 3-5-2 穿透式電子顯微鏡(TEM)分析 48 3-5-3 單電池測試 48 3-6 催化劑塗佈 49 3-7 Nafion膜前處理 50 3-8 薄膜電極組組裝-熱壓壓力 51 3-9 單電池操作參數 51 3-9-1氧氣流速 51 3-9-2甲醇流速 52 3-9-3活化時間 52 3-10 鉛釕黃綠石氧化物電化學測試 53 3-11 薄膜修飾方式 55 3-11-1直接修飾 55 3-11-2漸層式修飾 56 3-11-2-1不同空白溶液 58 3-11-2-2不同修飾離子 58 3-11-2-3修飾時間 59 3-12修飾薄膜穩定度 59 3-13甲醇濃度與單電池功率 60 第四章 結果與討論 61 4-1催化劑特性分析 61 4-1-1循環伏安法催化劑性能測試 61 4-1-2穿透式電子顯微鏡(TEM)分析 63 4-1-3單電池測試 66 4-2催化劑塗佈 67 4-3薄膜電極組組裝-熱壓壓力 68 4-4單電池操作參數 70 4-4-1氧氣流速 70 4-4-2甲醇流速 73 4-4-3活化時間 74 4-5鉛釕黃綠石氧化物電化學測試 79 4-6 薄膜修飾方式 85 4-6-1 直接修飾 85 4-6-2 漸層式修飾 87 4-6-2-1不同空白溶液 87 4-6-2-2不同修飾離子 89 4-6-2-3修飾時間 91 4-7薄膜穩定度 95 4-8甲醇濃度與電池功率 99 第五章 結論與未來展望 101 5-1結論 101 5-2未來展望 102 參考文獻 10

    Similar works