CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
unknown
基于内部非线性映射模型PLS算法的比较研究
Authors
宋斯男
师佳
Publication date
1 January 2010
Publisher
Abstract
本文从线性偏最小二乘(PlS)算法出发对基于内部非线性映射模型的PlS算法的思想本质进行深入的剖析和探讨。结合拟合非线性过程的实际问题,从拟合精度、计算复杂度两方面对基于二次函数和神经网络作为内部模型的PlS方法以及基于误差反馈调整的PlS算法进行了比较,在此基础上对不同的非线性PlS算法的应用提出了若干指导性建议
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Xiamen University Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:dspace.xmu.edu.cn:2288/106...
Last time updated on 16/06/2016