unknown

Research and Application of Self-organizing Feature

Abstract

芬兰神经网络专家Kohonen教授提出的自组织特征映射(SOFM)神经网络越来越受到人们的重视,因为该网络具有拓扑保持和概率分布保持的优良特性。SOFM神经网络属于无导师学习的竞争型网络,通过自组织方式用大量样本数据来调整其连接权值,使得网络输出层特征图能够反映样本数据的分布情况。本文在分析SOFM神经网络传统学习算法的基础上,从提高算法收敛速度和性能出发,提出了一种改进算法。该算法随机选择样本输入次序,以减小学习效率对样本输入次序的依赖;根据实际应用并结合专家经验确定初始连接权值;学习率的调整函数用指数函数替代线性函数;采用高斯函数作为拓扑邻域函数,替代基本算法中的矩形或者圆形邻域;将算法分...Self-organizing feature maps neural network, proposed by professor Kohonen, who is a neural network’ expert of Finland, has received more and more attention, because the network has the nature of topology preservation and probability distribution. The SOFM network, belonging to unsupervised artificial neural network models, adjusts its weight vectors adaptively according to the input samples throu...学位:工学硕士院系专业:计算机与信息工程学院计算机科学系_计算机应用技术学号:20024001

    Similar works