unknown

The Study and Application of Smooth Support Vector Machine Clustering Based on Minimum Spanning Trees

Abstract

支持向量机(SupportVectorMachines,SVM)是在统计学习理论基础上发展起来的一种新的模式识别方法,近年来在其理论研究和算法实现方面取得了突破性进展。SVM聚类方法是一种新的聚类算法,它利用核函数,通过映射把输入空间的样本点映射到高维特征空间中进行处理。其方法在性能上比经典算法有较大的改进,但传统SVM算法随着数据集的增加其时间复杂度呈指数级增加,如何减少该算法的时间复杂度从而应用于实际数据挖掘问题,正是现在研究的热点。本文针对支持向量机的聚类方法进行了研究,提出了最小生成树平滑支持向量机的算法。本文所做的工作主要是:首先,通过支持向量求解算法的分析,结合聚类的特性,提出了将...Support Vector Machines (SVM) is a new methodology for pattern recognition, which is based on statistic learning theory. Recently its theoretical research and algorithm have a greatest development. Support Vector Clustering (SVC) is a novel clustering method, which maps the samples from input space to high dimension feature space via kernel functions. Although its performance has been improved com...学位:工学硕士院系专业:信息科学与技术学院自动化系_模式识别与智能系统学号:20043105

    Similar works