unknown

Localization for the p-Laplacian Equation and Global Solution to the Compressible N-S System in 1D Case

Abstract

本论文的内容分为两部分. 第一部分主要讨论拟线性抛物方程的Cauchy问题 \begin{equation}\left\{\begin{array}{ll} u_t={\rmdiv}(|\nablau|^{p-2}\nablau)+u^q,&(x,t)\inR^N\times(0,T),\u(x,0)=u_0(x)\geq0,&x\inR^N,\end{array}\right.\label{1} \end{equation} 解的性质,得到的主要结果如下: 1.对Cauchy问题(0.0.1)证明了解具有局部化性质,即:如果q\geqp-1,并且给定的初始函数u_{...This thesis is divided into two parts. The former part concerns the following quasi-linear equation \begin{equation*}\left\{ \begin{array}{ll} u_t={\rm div} (|\nabla u|^{p-2}\nabla u)+u^q, & (x,t)\in R^N\times (0,T),\u(x,0)=u_0(x)\geq0,& x\in R^N, \end{array}\right. \hspace{3.5cm} (0.0.1) \end{equation*} and we obtained the following results: 1. For the Cauchy problem (0.0.1)$,...学位:理学博士院系专业:数学科学学院数学与应用数学系_基础数学学号:1902006015315

    Similar works