The Cosmic Infrared Background (CIB) provides an opportunity to constrain
many properties of the high redshift (z>6) stellar population as a whole. This
background, specifically, from 1 to 200 microns, will contain any information
about the era of reionization and the stars responsible for producing these
ionizing photons. In this paper, we look at the fractional anisotropy delta I/I
of this high redshift population, which is the ratio of the magnitude of the
fluctuations (delta I) and the mean intensity (I). We show that this can be
used to constrain the escape fraction of the population as a whole. The
magnitude of the fluctuations of the CIB depend on the escape fraction, while
the mean intensity does not. This results in lower values of the escape
fraction producing higher values of the fractional anisotropy. This difference
is predicted to be larger at the longer wavelengths bands (above 10 microns),
albeit it is also much harder to observe in that range. We show that the
fractional anisotropy can also be used to separate a dusty from a dust-free
population. Finally, we discuss the constraints provided by current
observations on the CIB fractional anisotropy.Comment: 8 pages, 4 figures, accepted to ApJ, some clarifications added,
matches accepted versio