We investigate the influence of sub-Ohmic dissipation on randomly diluted
quantum Ising and rotor models. The dissipation causes the quantum dynamics of
sufficiently large percolation clusters to freeze completely. As a result, the
zero-temperature quantum phase transition across the lattice percolation
threshold separates an unusual super-paramagnetic cluster phase from an
inhomogeneous ferromagnetic phase. We determine the low-temperature
thermodynamic behavior in both phases which is dominated by large frozen and
slowly fluctuating percolation clusters. We relate our results to the smeared
transition scenario for disordered quantum phase transitions, and we compare
the cases of sub-Ohmic, Ohmic, and super-Ohmic dissipation.Comment: 9 pages, 2 figure