我们考虑的李代数Ah为由{A(m)∣m∈Γ}张成的向量空间,Γ=Z2,Ah=m∈Γ⨁CA(m) 且Ah上的李运算定义为 [\mathbf{A}(\mathbf{m}),\mathbf{A}(\mathbf{n})]=g(\mathbf{m},\mathbf{n},h...let $\Gamma=\mathbb{Z}\mathbf{e}_{1}+\mathbb{Z}\mathbf{e}_{2}$, and $\Gamma^{*}=\Gamma\backslash\{0\}$. For $\mathbf{m}=(m_{1},m_{2})$ and $\mathbf{n}=(n_{1},n_{2})\in\Gamma$, let $\mathbb{R}$ is a real field, we consider the Lie algebra {\mathbf{A}}_{h}=\bigoplus_{\mathbf{m}\in\Gamma}\mathbb{C}\mathbf{A}(\mathbf{m})withbracket[\mathbf{A}(\mathbf{m}),\mathbf{A}(\mathbf{n})]...学位:理学硕士院系专业:数学科学学院_基础数学学号:1902011115252