Theoretical study on conformational features and cation-binding properties of a diquinone calix[4]arene

Abstract

Scientific Research Fund of Hunan Provincial Education Department [12A132]; State Key Laboratory of Physical Chemistry of Solid Surfaces [201104]Theoretical studies of a diquinone calix[4]arene and its interactions with the cations Li+, Na+, K+ and Ag+ have been performed. Conformational features and cation-binding properties were evaluated with the restricted hybrid Becke three-parameter exchange functional method using the 6-31G(d) basis set and its relativistic effective core potentials. To model the effect of medium, the polarisable continuum model was also used. Four typical conformations of the parent diquinone calix[4]arene were studied. The calculated results show that the most stable conformers are 1,3-alternate and partial cone in the gas phase and in CH2Cl2 solution, respectively. The optimised geometric structures were used to perform natural bond orbital analysis. The two main types of driving force metal-ligand and cation- interactions are investigated. The calculated binding energy for cations (Li+, Na+, K+ and Ag+) is discussed. The calculated results indicate that cone complexes are the most stable

    Similar works