unknown

An Improved Stabilized Conforming Nodal Integration Meshfree Method with Application to Consolidation Analysis

Abstract

由于伽辽金无网格法常采用的移动最小二乘或再生核形函数不是多项式,因此在构造刚度矩阵时需要高阶高斯积分,计算效率较低。基于线性准确性建立的稳定节点积分无网格法在保证稳定性的同时具有节点积分的特性,显著提高了计算效率,近年来得到了广泛的应用。但是数值算例表明,原有稳定节点积分无网格法在内部节点影响域覆盖强制边界时不能严格满足线性准确性。本文系统分析了这一问题产生的原因,并从弱形式出发重新构造了线性准确性条件,提出了修正的稳定节点积分无网格法。该方法在任何情况下都能够严格满足线性准确积分约束条件,解决了原有稳定节点积分针对无网格近似中内部节点影响域包含边界时无法达到严格线性准确的问题。典型算例表明,...Due to the non-polynomial nature of the moving least square or reproducing kernel meshfree shape function, high order Gauss quadrature rule is often required to construct the meshfree stiffness matrix. The stabilized conforming nodal integration (SCNI) meshfree method is based upon the linear exactness condition. Both stability and efficiency are simultaneously achieved in this method. Consequentl...学位:工学硕士院系专业:建筑与土木工程学院_工程力学学号:2532010115169

    Similar works