We prove the conjecture of George Weiss for contraction semigroups on Hilbert spaces, giving a characterization of infinite-time admissible observation functionals for a contraction semigroup, namely that such a functional C is infinite-time admissible if and only if there is an M > 0 such that parallel to IC(sI - A)(-1)parallel to less than or equal to M/root Re s for all s in the open right half-plane. Here A denotes the infinitesimal generator of the semigroup. The result provides a simultaneous generalization of several celebrated results from the theory of Hardy spaces involving Carleson measures and Hankel operators