CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
unknown
关于局部对称空间中具有平行平均曲率
Authors
李锦堂
林和子
Publication date
1 January 2008
Publisher
厦门大学学报(自然科学版)
Abstract
设M 为单位球面S n + p (1) 中的一个紧致子流形. ∪M = ∪x ∈M∪Mx 是M 的单位切丛. 陈卿引入函数f ( x) = maxu, v ∈∪Mx‖B ( u , u) - B ( v , v) ‖2 ,其中B 是M 的第二基本形式. 当M 具有平行平均曲率向量时,陈卿通过研究函数f ( x) ,得到一Pinching 定理. 当考虑外围流形为局部对称空间时,我们应用Gauss 方程,Ricci 方程和外围空间的局部对称性质等方法得到:若f ( x) 满足一个Pinching 条件,则M 或是全脐的或是一个Veronese 曲面. 当p ≥2 时,所得的结果改进了陈卿研究的相应结果
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Xiamen University Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:dspace.xmu.edu.cn:2288/648...
Last time updated on 16/06/2016