This paper examines star formation (SF) in relatively massive, primarily
early-type galaxies (ETGs) at z~0.1. A sample is drawn from bulge-dominated
GALEX/SDSS galaxies on the optical red sequence with strong UV excess and yet
quiescent SDSS spectra. High-resolution far-UV imaging of 27 such ETGs using
HST ACS/SBC reveals structured UV morphology in 93% of the sample, consistent
with low-level ongoing SF (~0.5 Ms/yr). In 3/4 of the sample the SF is extended
on galaxy scales (25-75 kpc), while the rest contains smaller (5-15 kpc) SF
patches in the vicinity of an ETG - presumably gas-rich satellites being
disrupted. Optical imaging reveals that all ETGs with galaxy-scale SF in our
sample have old stellar disks (mostly S0 type). None is classified as a true
elliptical. In our sample, galaxy-scale SF takes the form of UV rings of
varying sizes and morphologies. For the majority of such objects we conclude
that the gas needed to fuel current SF has been accreted from the IGM, probably
in a prolonged, quasi-static manner, leading in some cases to additional disk
buildup. The remaining ETGs with galaxy-scale SF have UV and optical
morphologies consistent with minor merger-driven SF or with the final stages of
SF in fading spirals. Our analysis excludes that all recent SF on the red
sequence resulted from gas-rich mergers. We find further evidence that
galaxy-scale SF is almost exclusively an S0 phenomenon (~20% S0s have SF) by
examining the overall optically red SDSS ETGs. Conclusion is that significant
number of field S0s maintain or resume low-level SF because the preventive
feedback is not in place or is intermittent. True ellipticals, on the other
hand, stay entirely quiescent even in the field.Comment: Accepted for publication in ApJ. Contains color figures, but
compatible with non-color printer