research

Similarities in Populations of Star Clusters

Abstract

We compare the observed mass functions and age distributions of star clusters in six well-studied galaxies: the Milky Way, Magellanic Clouds, M83, M51, and Antennae. In combination, these distributions span wide ranges of mass and age: 10^2\lea M/M_{\odot}\lea10^6 and 10^6\lea\tau/yr \lea10^9. We confirm that the distributions are well represented by power laws: dN/dMMβdN/dM\propto M^{\beta} with β1.9\beta \approx-1.9 and dN/dττγdN/d\tau\propto\tau^{\gamma} with γ0.8\gamma\approx -0.8. The mass and age distributions are approximately independent of each other, ruling out simple models of mass-dependent disruption. As expected, there are minor differences among the exponents, at a level close to the true uncertainties, ϵβϵγ\epsilon_{\beta}\sim\epsilon_{\gamma}\sim~0.1--0.2. However, the overwhelming impression is the similarity of the mass functions and age distributions of clusters in these different galaxies, including giant and dwarf, quiescent and interacting galaxies. This is an important empirical result, justifying terms such as "universal" or "quasi-universal." We provide a partial theoretical explanation for these observations in terms of physical processes operating during the formation and disruption of the clusters, including star formation and feedback, subsequent stellar mass loss, and tidal interactions with passing molecular clouds. A full explanation will require additional information about the molecular clumps and star clusters in galaxies beyond the Milky Way.Comment: 20 pages, 4 figures, 2 tables; published in the Astrophysical Journal, 752:96 (2012 June 20

    Similar works

    Full text

    thumbnail-image

    Available Versions