research

Generalized Wasserstein distance and its application to transport equations with source

Abstract

In this article, we generalize the Wasserstein distance to measures with different masses. We study the properties of such distance. In particular, we show that it metrizes weak convergence for tight sequences. We use this generalized Wasserstein distance to study a transport equation with source, in which both the vector field and the source depend on the measure itself. We prove existence and uniqueness of the solution to the Cauchy problem when the vector field and the source are Lipschitzian with respect to the generalized Wasserstein distance

    Similar works