research

Maximal antichains of minimum size

Abstract

Let n⩾4n\geqslant 4 be a natural number, and let KK be a set K⊆[n]:=1,2,...,nK\subseteq [n]:={1,2,...,n}. We study the problem to find the smallest possible size of a maximal family A\mathcal{A} of subsets of [n][n] such that A\mathcal{A} contains only sets whose size is in KK, and A⊈BA\not\subseteq B for all A,B⊆A{A,B}\subseteq\mathcal{A}, i.e. A\mathcal{A} is an antichain. We present a general construction of such antichains for sets KK containing 2, but not 1. If 3∈K3\in K our construction asymptotically yields the smallest possible size of such a family, up to an o(n2)o(n^2) error. We conjecture our construction to be asymptotically optimal also for 3∉K3\not\in K, and we prove a weaker bound for the case K=2,4K={2,4}. Our asymptotic results are straightforward applications of the graph removal lemma to an equivalent reformulation of the problem in extremal graph theory which is interesting in its own right.Comment: fixed faulty argument in Section 2, added reference

    Similar works