Abstract

We compute exactly the partition function of two dimensional N=(2,2) gauge theories on S^2 and show that it admits two dual descriptions: either as an integral over the Coulomb branch or as a sum over vortex and anti-vortex excitations on the Higgs branches of the theory. We further demonstrate that correlation functions in two dimensional Liouville/Toda CFT compute the S^2 partition function for a class of N=(2,2) gauge theories, thereby uncovering novel modular properties in two dimensional gauge theories. Some of these gauge theories flow in the infrared to Calabi-Yau sigma models - such as the conifold - and the topology changing flop transition is realized as crossing symmetry in Liouville/Toda CFT. Evidence for Seiberg duality in two dimensions is exhibited by demonstrating that the partition function of conjectured Seiberg dual pairs are the same.Comment: 78 pages, LaTeX; v2: small corrections and references added; v3: JHEP version, discussing factorization further in new appendix F; v4: sign corrected for non simply-connected gauge grou

    Similar works