research

Rank penalized estimation of a quantum system

Abstract

We introduce a new method to reconstruct the density matrix ρ\rho of a system of nn-qubits and estimate its rank dd from data obtained by quantum state tomography measurements repeated mm times. The procedure consists in minimizing the risk of a linear estimator ρ^\hat{\rho} of ρ\rho penalized by given rank (from 1 to 2n2^n), where ρ^\hat{\rho} is previously obtained by the moment method. We obtain simultaneously an estimator of the rank and the resulting density matrix associated to this rank. We establish an upper bound for the error of penalized estimator, evaluated with the Frobenius norm, which is of order dn(4/3)n/mdn(4/3)^n /m and consistency for the estimator of the rank. The proposed methodology is computationaly efficient and is illustrated with some example states and real experimental data sets

    Similar works