unknown

Exploring complex rhythmic devices in new music composition through software design

Abstract

This thesis examines the role that complex rhythms perform in my music. I will demonstrate how the software I have created is unique and necessary for this type of rhythmic exploration in music composition and how it differs from existing softwares. I will investigate the practice of hearing one’s environment as music and how the development of my software and compositions are integrally linked to this phenomenon and make clear the importance of advanced rhythmic study within this practice. I am particularly interested in extending my own and others’ perceptual capabilities to hear more and more complex rhythms accurately and congruently with what they would normally consider ‘groove’. To this end, my project involves the development of softwares that: mathematically model the naturally occurring rhythms of specific species of frogs; allow the simultaneous occurrence of ninety-six different tempos; explore Miles Okazaki’s Rhythm Matrix; enable the creation of new and complex grooves from simple beginnings via performance means; allow for infinitely complex variable mapping of musical parameters and rhythms via simple gestural controls; are completely modular and dynamic in design, thereby freeing the user from normal software design limitations. I will demonstrate the use of these softwares in my music compositions and analyse the compositions from within the context of rhythmic exploration and discovery. KEYWORDS: composition, computer music, software, polyrhythm, algorithmic, experimental, groove, tempo, beat, poly-tempi, nature, frog

    Similar works