A new generation of neutrinoless double beta decay experiments with improved
sensitivity is currently under design and construction. They will probe
inverted hierarchy region of the neutrino mass pattern. There is also a revived
interest to the resonant neutrinoless double-electron capture, which has also a
potential to probe lepton number conservation and to investigate the neutrino
nature and mass scale. The primary concern are the nuclear matrix elements.
Clearly, the accuracy of the determination of the effective Majorana neutrino
mass from the measured 0\nu\beta\beta-decay half-life is mainly determined by
our knowledge of the nuclear matrix elements. We review recent progress
achieved in the calculation of 0\nu\beta\beta and 0\nu ECEC nuclear matrix
elements within the quasiparticle random phase approximation. A considered
self-consistent approach allow to derive the pairing, residual interactions and
the two-nucleon short-range correlations from the same modern realistic
nucleon-nucleon potentials. The effect of nuclear deformation is taken into
account. A possibility to evaluate 0\nu\beta\beta-decay matrix elements
phenomenologically is discussed.Comment: 24 pages; 80 references. arXiv admin note: substantial text overlap
with arXiv:1101.214