research

Singularities of the divergence of continuous vector fields and uniform Hausdorff estimates

Abstract

We prove that every closed set which is not sigma-finite with respect to the Hausdorff measure H^{N-1} carries singularities of continuous vector fields in the Euclidean space R^N for the divergence operator. We also show that finite measures which do not charge sets of sigma-finite Hausdorff measure H^{N-1} can be written as an L^1 perturbation of the divergence of a continuous vector field. The main tool is a property of approximation of measures in terms of the Hausdorff content

    Similar works

    Full text

    thumbnail-image

    Available Versions