We give a simple probabilistic description of a transition between two states
which leads to a generalized escort distribution. When the parameter of the
distribution varies, it defines a parametric curve that we call an escort-path.
The R\'enyi divergence appears as a natural by-product of the setting. We study
the dynamics of the Fisher information on this path, and show in particular
that the thermodynamic divergence is proportional to Jeffreys' divergence.
Next, we consider the problem of inferring a distribution on the escort-path,
subject to generalized moments constraints. We show that our setting naturally
induces a rationale for the minimization of the R\'enyi information divergence.
Then, we derive the optimum distribution as a generalized q-Gaussian
distribution