research

Outerplanar graph drawings with few slopes

Abstract

We consider straight-line outerplanar drawings of outerplanar graphs in which a small number of distinct edge slopes are used, that is, the segments representing edges are parallel to a small number of directions. We prove that Δ1\Delta-1 edge slopes suffice for every outerplanar graph with maximum degree Δ4\Delta\ge 4. This improves on the previous bound of O(Δ5)O(\Delta^5), which was shown for planar partial 3-trees, a superclass of outerplanar graphs. The bound is tight: for every Δ4\Delta\ge 4 there is an outerplanar graph with maximum degree Δ\Delta that requires at least Δ1\Delta-1 distinct edge slopes in an outerplanar straight-line drawing.Comment: Major revision of the whole pape

    Similar works