Let Λ be the von Mangoldt function and (rG(n)=∑m1+m2=nΛ(m1)Λ(m2)) be the counting function for the Goldbach
numbers. Let N≥2 be an integer. We prove that n≤N∑rG(n)Γ(k+1)(1−n/N)k=Γ(k+3)N2−2ρ∑Γ(ρ+k+2)Γ(ρ)Nρ+1+ρ1∑ρ2∑Γ(ρ1+ρ2+k+1)Γ(ρ1)Γ(ρ2)Nρ1+ρ2+Ok(N1/2),
for k>1, where ρ, with or without subscripts, runs over the
non-trivial zeros of the Riemann zeta-function ζ(s).Comment: submitte