research

Random determinants, mixed volumes of ellipsoids, and zeros of Gaussian random fields

Abstract

Consider a d×dd\times d matrix MM whose rows are independent centered non-degenerate Gaussian vectors ξ1,...,ξd\xi_1,...,\xi_d with covariance matrices Σ1,...,Σd\Sigma_1,...,\Sigma_d. Denote by Ei\mathcal{E}_i the location-dispersion ellipsoid of ξi:Ei=xRd:xΣi1x1\xi_i:\mathcal{E}_i={\mathbf{x}\in\mathbb{R}^d : \mathbf{x}^\top\Sigma_i^{-1} \mathbf{x}\leqslant1}. We show that EdetM=d!(2π)d/2Vd(E1,...,Ed), \mathbb{E}\,|\det M|=\frac{d!}{(2\pi)^{d/2}}V_d(\mathcal{E}_1,...,\mathcal{E}_d), where Vd(,...,)V_d(\cdot,...,\cdot) denotes the {\it mixed volume}. We also generalize this result to the case of rectangular matrices. As a direct corollary we get an analytic expression for the mixed volume of dd arbitrary ellipsoids in Rd\mathbb{R}^d. As another application, we consider a smooth centered non-degenerate Gaussian random field X=(X1,...,Xk):RdRkX=(X_1,...,X_k)^\top:\mathbb{R}^d\to\mathbb{R}^k. Using Kac-Rice formula, we obtain the geometric interpretation of the intensity of zeros of XX in terms of the mixed volume of location-dispersion ellipsoids of the gradients of Xi/VarXiX_i/\sqrt{\mathbf{Var} X_i}. This relates zero sets of equations to mixed volumes in a way which is reminiscent of the well-known Bernstein theorem about the number of solutions of the typical system of algebraic equations

    Similar works

    Full text

    thumbnail-image

    Available Versions