Underwater 3-D imaging with laser triangulation

Abstract

The objective of this master thesis was to study the performance of an active triangulation system for 3-D imaging in underwater applications. Structured light from a 20 mW laser and a conventional video camera was used to collect data for generation of 3-D images. Different techniques to locate the laser line and transform it into spatial coordinates were developed and evaluated. A field- and a laboratory trial were performed. From the trials we can conclude that the distance resolution is much higher than the lateral- and longitudinal resolution. The lateral resolution can be improved either by using a high frame rate camera or simply by using a low scanning speed. It is possible to obtain a range resolution of less than a millimeter. The maximum range of vision was 5 meters under water measured on a white target and 3 meters for a black target in clear sea water. These results are however dependent on environmental and system parameters such as laser power, laser beam divergence and water turbidity. A higher laser power would for example increase the maximum range

    Similar works

    Full text

    thumbnail-image