Towards a Viscoelastic Model for Phase Separation in Polymer Modified Bitumen

Abstract

In this thesis, a review is given on the most popular polymers used today for polymer modification of bitumen. Furthermore, the development of a model for phase separation in polymer modified bitumen (PMB) is proposed, that will enable a better control and understanding of PMB phase behaviour, allowing thus to enhanced long-term performance. PMB is hereby considered as a blend and focus is placed on its structure, its equilibrium thermodynamics and its phase separation dynamics. The effects of dynamic asymmetry on phase separation in PMB are analysed with related theories and some image data. Based on the discussion in this thesis, it is concluded that the effects of dynamic asymmetry between bitumen and polymer should be taken into consideration when studying phase separation in PMB. By analysing related literature and image data, it is found that some features of viscoelastic phase separation are shown during the phase separation process in some PMBs. It is therefore possible and useful to develop a viscoelastic model for PMB to describe its phase separation behaviour. In this, the stress-diffusion coupling is expected to play a key role in the model. Finally, recommendations are made towards the future research which is needed to realize the proposed model.QC 20150409</p

    Similar works

    Full text

    thumbnail-image

    Available Versions