A fully quantum mechanical model for electron transport in quantum well infrared photodetectors is
presented, based on a self-consistent solution of the coupled rate equations. The important macroscopic
parameters like current density, responsivity and capture probability can be estimated directly from this
first principles calculation. The applicability of the model was tested by comparison with experimental
measurements from a GaAs/AlGaAs device, and good agreement was found. The model is general and can
be applied to any other material system or QWIP design