The free energy functional has recently been proposed as a variational
principle for bounded rational decision-making, since it instantiates a natural
trade-off between utility gains and information processing costs that can be
axiomatically derived. Here we apply the free energy principle to general
decision trees that include both adversarial and stochastic environments. We
derive generalized sequential optimality equations that not only include the
Bellman optimality equations as a limit case, but also lead to well-known
decision-rules such as Expectimax, Minimax and Expectiminimax. We show how
these decision-rules can be derived from a single free energy principle that
assigns a resource parameter to each node in the decision tree. These resource
parameters express a concrete computational cost that can be measured as the
amount of samples that are needed from the distribution that belongs to each
node. The free energy principle therefore provides the normative basis for
generalized optimality equations that account for both adversarial and
stochastic environments.Comment: 10 pages, 2 figure