Let K be a comonad on a model category M. We provide conditions under which
the associated category of K-coalgebras admits a model category structure such
that the forgetful functor to M creates both cofibrations and weak
equivalences.
We provide concrete examples that satisfy our conditions and are relevant in
descent theory and in the theory of Hopf-Galois extensions. These examples are
specific instances of the following categories of comodules over a coring. For
any semihereditary commutative ring R, let A be a dg R-algebra that is
homologically simply connected. Let V be an A-coring that is semifree as a left
A-module on a degreewise R-free, homologically simply connected graded module
of finite type. We show that there is a model category structure on the
category of right A-modules satisfying the conditions of our existence theorem
with respect to the comonad given by tensoring over A with V and conclude that
the category of V-comodules in the category of right A-modules admits a model
category structure of the desired type. Finally, under extra conditions on R,
A, and V, we describe fibrant replacements in this category of comodules in
terms of a generalized cobar construction.Comment: 34 pages, minor corrections. To appear in the Proceedings of the
London Mathematical Societ