Abstract

We consider the distribution of argζ(σ+it)\arg\zeta(\sigma+it) on fixed lines σ>12\sigma > \frac12, and in particular the density d(σ)=limT+12T{t[T,+T]:argζ(σ+it)>π/2},d(\sigma) = \lim_{T \rightarrow +\infty} \frac{1}{2T} |\{t \in [-T,+T]: |\arg\zeta(\sigma+it)| > \pi/2\}|\,, and the closely related density d(σ)=limT+12T{t[T,+T]:ζ(σ+it)<0}.d_{-}(\sigma) = \lim_{T \rightarrow +\infty} \frac{1}{2T} |\{t \in [-T,+T]: \Re\zeta(\sigma+it) < 0\}|\,. Using classical results of Bohr and Jessen, we obtain an explicit expression for the characteristic function ψσ(x)\psi_\sigma(x) associated with argζ(σ+it)\arg\zeta(\sigma+it). We give explicit expressions for d(σ)d(\sigma) and d(σ)d_{-}(\sigma) in terms of ψσ(x)\psi_\sigma(x). Finally, we give a practical algorithm for evaluating these expressions to obtain accurate numerical values of d(σ)d(\sigma) and d(σ)d_{-}(\sigma).Comment: 22 pages, 3 tables. To appear in Proceedings of the International Number Theory Conference in Memory of Alf van der Poorten (Newcastle, Australia, 2011

    Similar works