As popular tools for spreading spam and malware, Sybils (or fake accounts)
pose a serious threat to online communities such as Online Social Networks
(OSNs). Today, sophisticated attackers are creating realistic Sybils that
effectively befriend legitimate users, rendering most automated Sybil detection
techniques ineffective. In this paper, we explore the feasibility of a
crowdsourced Sybil detection system for OSNs. We conduct a large user study on
the ability of humans to detect today's Sybil accounts, using a large corpus of
ground-truth Sybil accounts from the Facebook and Renren networks. We analyze
detection accuracy by both "experts" and "turkers" under a variety of
conditions, and find that while turkers vary significantly in their
effectiveness, experts consistently produce near-optimal results. We use these
results to drive the design of a multi-tier crowdsourcing Sybil detection
system. Using our user study data, we show that this system is scalable, and
can be highly effective either as a standalone system or as a complementary
technique to current tools