We have observed Feshbach resonances for 133Cs atoms in two different
hyperfine states at ultra-low static magnetic fields by using an atomic
fountain clock. The extreme sensitivity of our setup allows for high
signal-to-noise-ratio observations at densities of only 2*10^7 cm^{-3}. We have
reproduced these resonances using coupled-channels calculations which are in
excellent agreement with our measurements. We justify that these are s-wave
resonances involving weakly-bound states of the triplet molecular Hamiltonian,
identify the resonant closed channels, and explain the observed multi-peak
structure. We also describe a model which precisely accounts for the
collisional processes in the fountain and which explains the asymmetric shape
of the observed Feshbach resonances in the regime where the kinetic energy
dominates over the coupling strength.Comment: 5 pages, 4 figures, 1 tabl