The implicit particle filter is a sequential Monte Carlo method for data
assimilation that guides the particles to the high-probability regions via a
sequence of steps that includes minimizations. We present a new and more
general derivation of this approach and extend the method to particle smoothing
as well as to data assimilation for perfect models. We show that the
minimizations required by implicit particle methods are similar to the ones one
encounters in variational data assimilation and explore the connection of
implicit particle methods with variational data assimilation. In particular, we
argue that existing variational codes can be converted into implicit particle
methods at a low cost, often yielding better estimates, that are also equipped
with quantitative measures of the uncertainty. A detailed example is presented