Reconstruction of 3D scenes from pairs of uncalibrated images : creation of an interactive system for extracting 3D data points and investigation of automatic techniques for generating dense 3D data maps from pairs of uncalibrated images for remote sensing applications

Abstract

Much research effort has been devoted to producing algorithms that contribute directly or indirectly to the extraction of 3D information from a wide variety of types of scenes and conditions of image capture. The research work presented in this thesis is aimed at three distinct applications in this area: interactively extracting 3D points from a pair of uncalibrated images in a flexible way; finding corresponding points automatically in high resolution images, particularly those of archaeological scenes captured from a freely moving light aircraft; and improving a correlation approach to dense disparity mapping leading to 3D surface reconstructions. The fundamental concepts required to describe the principles of stereo vision, the camera models, and the epipolar geometry described by the fundamental matrix are introduced, followed by a detailed literature review of existing methods. An interactive system for viewing a scene via a monochrome or colour anaglyph is presented which allows the user to choose the level of compromise between amount of colour and ghosting perceived by controlling colour saturation, and to choose the depth plane of interest. An improved method of extracting 3D coordinates from disparity values when there is significant error is presented. Interactive methods, while very flexible, require significant effort from the user finding and fusing corresponding points and the thesis continues by presenting several variants of existing scale invariant feature transform methods to automatically find correspondences in uncalibrated high resolution aerial images with improved speed and memory requirements. In addition, a contribution to estimating lens distortion correction by a Levenberg Marquard based method is presented; generating data strings for straight lines which are essential input for estimating lens distortion correction. The remainder of the thesis presents correlation based methods for generating dense disparity maps based on single and multiple image rectifications using sets of automatically found correspondences and demonstrates improvements obtained using the latter method. Some example views of point clouds for 3D surfaces produced from pairs of uncalibrated images using the methods presented in the thesis are included.EThOS - Electronic Theses Online ServiceAl-Baath UniversityGBUnited Kingdo

    Similar works