research

Assessment and modeling of lava flow hazard on Etna volcano

Abstract

A methodology for constructing a probability map of lava inundation by considering the past eruptive behavior of the Mt Etna volcano is described. The basic a priori assumption is that new vents will not form far from existing ones and that such a distribution can be performed using a Gaussian kernel. The methodology is based on several steps: computation of susceptibility map that provides the spatial probability of vent opening; evaluation of the temporal probability for the occurrence of the hazard during the considered time interval; characterization of the expected eruptions; numerical simulations of lava flow paths, and elaboration of the hazard map. The application of MAGFLOW code, a physical-mathematical model, for simulating the lava flow paths represents the central part of this methodology for the hazard assessment at Etna. The simulation approach, to assess lava flow hazard, provides a more robust and locally accurate analysis than a simple probabilistic approach and accounts for the influence of the actual topography on the path of future lava flows

    Similar works