Recent theoretical and experimental work has demonstrated the existence of
one-sided, invariant barriers to the propagation of reaction-diffusion fronts
in quasi-two-dimensional periodically-driven fluid flows. These barriers were
called burning invariant manifolds (BIMs). We provide a detailed theoretical
analysis of BIMs, providing criteria for their existence, a classification of
their stability, a formalization of their barrier property, and mechanisms by
which the barriers can be circumvented. This analysis assumes the sharp front
limit and negligible feedback of the front on the fluid velocity. A
low-dimensional dynamical systems analysis provides the core of our results.Comment: 14 pages, 11 figures. To appear in Chaos Focus Issue:
Chemo-Hydrodynamic Patterns and Instabilities (2012