research

Revolutionaries and spies on random graphs

Abstract

Pursuit-evasion games, such as the game of Revolutionaries and Spies, are a simplified model for network security. In the game we consider in this paper, a team of rr revolutionaries tries to hold an unguarded meeting consisting of mm revolutionaries. A team of ss spies wants to prevent this forever. For given rr and mm, the minimum number of spies required to win on a graph GG is the spy number σ(G,r,m)\sigma(G,r,m). We present asymptotic results for the game played on random graphs G(n,p)G(n,p) for a large range of p=p(n),r=r(n)p = p(n), r=r(n), and m=m(n)m=m(n). The behaviour of the spy number is analyzed completely for dense graphs (that is, graphs with average degree at least n^{1/2+\eps} for some \eps > 0). For sparser graphs, some bounds are provided

    Similar works