Many stochastic differential equations that occur in financial modelling do
not satisfy the standard assumptions made in convergence proofs of numerical
schemes that are given in textbooks, i.e., their coefficients and the
corresponding derivatives appearing in the proofs are not uniformly bounded and
hence, in particular, not globally Lipschitz. Specific examples are the Heston
and Cox-Ingersoll-Ross models with square root coefficients and the Ait-Sahalia
model with rational coefficient functions. Simple examples show that, for
example, the Euler-Maruyama scheme may not converge either in the strong or
weak sense when the standard assumptions do not hold. Nevertheless, new
convergence results have been obtained recently for many such models in
financial mathematics. These are reviewed here. Although weak convergence is of
traditional importance in financial mathematics with its emphasis on
expectations of functionals of the solutions, strong convergence plays a
crucial role in Multi Level Monte Carlo methods, so it and also pathwise
convergence will be considered along with methods which preserve the positivity
of the solutions.Comment: Review Pape