research

Nebular water depletion as the cause of Jupiter's low oxygen abundance

Abstract

Motivated by recent spectroscopic observations suggesting that atmospheres of some extrasolar giant-planets are carbon-rich, i.e. carbon/oxygen ratio (C/O) \ge 1, we find that the whole set of compositional data for Jupiter is consistent with the hypothesis that it be a carbon-rich giant planet. We show that the formation of Jupiter in the cold outer part of an oxygen-depleted disk (C/O \sim1) reproduces the measured Jovian elemental abundances at least as well as the hitherto canonical model of Jupiter formed in a disk of solar composition (C/O = 0.54). The resulting O abundance in Jupiter's envelope is then moderately enriched by a factor of \sim2 ×\times solar (instead of \sim7 ×\times solar) and is found to be consistent with values predicted by thermochemical models of the atmosphere. That Jupiter formed in a disk with C/O \sim1 implies that water ice was heterogeneously distributed over several AU beyond the snow line in the primordial nebula and that the fraction of water contained in icy planetesimals was a strong function of their formation location and time. The Jovian oxygen abundance to be measured by NASA's Juno mission en route to Jupiter will provide a direct and strict test of our predictions.Comment: Accepted for publication in Astrophysical Journal Letter

    Similar works