In evolution equations for a complex amplitude, the phase obeys a much more
intricate equation than the amplitude. Nevertheless, general methods should be
applicable to both variables. On the example of the traveling wave reduction of
the complex cubic-quintic Ginzburg-Landau equation (CGL5), we explain how to
overcome the difficulties arising in two such methods: (i) the criterium that
the sum of residues of an elliptic solution should be zero, (ii) the
construction of a first order differential equation admitting the given
equation as a differential consequence (subequation method).Comment: 12 pages, no figure, to appear, Theoretical and Mathematical Physic