research

Energy-Dependent GRB Pulse Width due to the Curvature Effect and Intrinsic Band Spectrum

Abstract

Previous studies have found that the width of gamma-ray burst (GRB) pulse is energy dependent and that it decreases as a power-law function with increasing photon energy. In this work we have investigated the relation between the energy dependence of pulse and the so-called Band spectrum by using a sample including 51 well-separated fast rise and exponential decay long-duration GRB pulses observed by BATSE (Burst and Transient Source Experiment on the Compton Gamma Ray Observatory). We first decompose these pulses into rise, and decay phases and find the rise widths, and the decay widths also behavior as a power-law function with photon energy. Then we investigate statistically the relations between the three power-law indices of the rise, decay and total width of pulse (denoted as δr\delta_r, δd\delta_d and δw\delta_w, respectively) and the three Band spectral parameters, high-energy index (α\alpha), low-energy index (β\beta) and peak energy (EpE_p). It is found that (1)α\alpha is strongly correlated with δw\delta_w and δd\delta_d but seems uncorrelated with δr\delta_r; (2)β\beta is weakly correlated with the three power-law indices and (3)EpE_p does not show evident correlations with the three power-law indices. We further investigate the origin of δdα\delta_d-\alpha and δwα\delta_w-\alpha. We show that the curvature effect and the intrinsic Band spectrum could naturally lead to the energy dependence of GRB pulse width and also the δdα\delta_d-\alpha and δwα\delta_w-\alpha correlations. Our results would hold so long as the shell emitting gamma rays has a curve surface and the intrinsic spectrum is a Band spectrum or broken power law. The strong δdα\delta_d-\alpha correlation and inapparent correlations between δr\delta_r and three Band spectral parameters also suggest that the rise and decay phases of GRB pulses have different origins.Comment: 29 pages, 9 figures, 4 tables. Accepted for publication in The Astrophysical Journa

    Similar works

    Full text

    thumbnail-image

    Available Versions