Recently V. Krushkal and D. Renardy generalized the Tutte polynomial from
graphs to cell complexes. We show that evaluating this polynomial at the origin
gives the number of cellular spanning trees in the sense of A. Duval, C.
Klivans, and J. Martin. Moreover, after a slight modification, the
Tutte-Krushkal-Renardy polynomial evaluated at the origin gives a weighted
count of cellular spanning trees, and therefore its free term can be calculated
by the cellular matrix-tree theorem of Duval et al. In the case of cell
decompositions of a sphere, this modified polynomial satisfies the same duality
identity as the original polynomial. We find that evaluating the
Tutte-Krushkal-Renardy along a certain line gives the Bott polynomial. Finally
we prove skein relations for the Tutte-Krushkal-Renardy polynomial..Comment: Minor revision according to a reviewer comments. To appear in the
Journal of Combinatorial Theory, Series