research

On the convergence of double integrals and a generalized version of Fubini's theorem on successive integration

Abstract

Let the function f: \bar{\R}^2_+ \to \C be such that f\in L^1_{\loc} (\bar{\R}^2_+). We investigate the convergence behavior of the double integral \int^A_0 \int^B_0 f(u,v) du dv \quad {\rm as} \quad A,B \to \infty,\leqno(*) where AA and BB tend to infinity independently of one another; while using two notions of convergence: that in Pringsheim's sense and that in the regular sense. Our main result is the following Theorem 3: If the double integral (*) converges in the regular sense, or briefly: converges regularly, then the finite limits lim⁑yβ†’βˆžβˆ«0A(∫0yf(u,v)dv)du=:I1(A)\lim_{y\to \infty} \int^A_0 \Big(\int^y_0 f(u,v) dv\Big) du =: I_1 (A) and lim⁑xβ†’βˆžβˆ«0B(∫0xf(u,v)du)dv=:I2(B)\lim_{x\to \infty} \int^B_0 \Big(\int^x_0 f(u,v) du) dv = : I_2 (B) exist uniformly in 0<A,B<∞0<A, B <\infty, respectively; and lim⁑Aβ†’βˆžI1(A)=lim⁑Bβ†’βˆžI2(B)=lim⁑A,Bβ†’βˆžβˆ«0A∫0Bf(u,v)dudv.\lim_{A\to \infty} I_1(A) = \lim_{B\to \infty} I_2 (B) = \lim_{A, B \to \infty} \int^A_0 \int^B_0 f(u,v) du dv. This can be considered as a generalized version of Fubini's theorem on successive integration when f\in L^1_{\loc} (\bar{\R}^2_+), but f∉L1(RΛ‰+2)f\not\in L^1 (\bar{\R}^2_+)

    Similar works

    Full text

    thumbnail-image

    Available Versions