research

Optimal growth for linear processes with affine control

Abstract

We analyse an optimal control with the following features: the dynamical system is linear, and the dependence upon the control parameter is affine. More precisely we consider x˙α(t)=(G+α(t)F)xα(t)\dot x_\alpha(t) = (G + \alpha(t) F)x_\alpha(t), where GG and FF are 3×33\times 3 matrices with some prescribed structure. In the case of constant control α(t)α\alpha(t)\equiv \alpha, we show the existence of an optimal Perron eigenvalue with respect to varying α\alpha under some assumptions. Next we investigate the Floquet eigenvalue problem associated to time-periodic controls α(t)\alpha(t). Finally we prove the existence of an eigenvalue (in the generalized sense) for the optimal control problem. The proof is based on the results by [Arisawa 1998, Ann. Institut Henri Poincar\'e] concerning the ergodic problem for Hamilton-Jacobi equations. We discuss the relations between the three eigenvalues. Surprisingly enough, the three eigenvalues appear to be numerically the same

    Similar works