research

Necessary and sufficient conditions for boundedness of commutators of the general fractional integral operators on weighted Morrey spaces

Abstract

We prove that bb is in Lip_{\bz}(\bz) if and only if the commutator [b,Lα/2][b,L^{-\alpha/2}] of the multiplication operator by bb and the general fractional integral operator Lα/2L^{-\alpha/2} is bounded from the weighed Morrey space Lp,k(ω)L^{p,k}(\omega) to Lq,kq/p(ω1(1α/n)q,ω)L^{q,kq/p}(\omega^{1-(1-\alpha/n)q},\omega), where 0<β<10<\beta<1, 0<α+β<n,1<p<n/(α+β)0<\alpha+\beta<n, 1<p<{n}/({\alpha+\beta}), 1/q=1/p(α+β)/n,{1}/{q}={1}/{p}-{(\alpha+\beta)}/{n}, 0k<p/q,0\leq k<{p}/{q}, ωq/pA1\omega^{{q}/{p}}\in A_1 and rω>1kp/qk, r_\omega> \frac{1-k}{p/q-k}, and here rωr_\omega denotes the critical index of ω\omega for the reverse H\"{o}lder condition.Comment: 12 pages; Classical Analysis and ODEs (math.CA), Functional Analysis (math.FA

    Similar works