We address two selection effects that operate on samples of gravitationally
lensed dusty galaxies identified in millimeter- and submillimeter-wavelength
surveys. First, we point out the existence of a "size bias" in such samples:
due to finite source effects, sources with higher observed fluxes are
increasingly biased towards more compact objects. Second, we examine the effect
of differential lensing in individual lens systems by modeling each source as a
compact core embedded in an extended diffuse halo. Considering the ratio of
magnifications in these two components, we find that at high overall
magnifications the compact component is amplified by a much larger factor than
the diffuse component, but at intermediate magnifications (~10) the probability
of a larger magnification for the extended region is higher. Lens models
determined from multi-frequency resolved imaging data are crucial to correct
for this effect.Comment: 7 pages, 6 figure