Repeated closed-loop control operations acting as piecewise-constant
Liouville superoperators conditioned on the outcomes of regularly performed
measurements may effectively be described by a fixed-point iteration for the
density matrix. Even when all Liouville superoperators point to the completely
mixed state, feedback of the measurement result may lead to a pure state, which
can be interpreted as selective dampening of undesired states. Using a
microscopic model, we exemplify this for a single qubit, which can be purified
in an arbitrary single-qubit state by tuning the measurement direction and two
qubits that may be purified towards a Bell state by applying a special
continuous two-local measurement. The method does not require precise knowledge
of decoherence channels and works for large reservoir temperatures provided
measurement, processing, and control can be implemented in a continuous
fashion.Comment: to appear in PR