Although mixed extensions of finite games always admit equilibria, this is
not the case for countable games, the best-known example being Wald's
pick-the-larger-integer game. Several authors have provided conditions for the
existence of equilibria in infinite games. These conditions are typically of
topological nature and are rarely applicable to countable games. Here we
establish an existence result for the equilibrium of countable games when the
strategy sets are a countable group and the payoffs are functions of the group
operation. In order to obtain the existence of equilibria, finitely additive
mixed strategies have to be allowed. This creates a problem of selection of a
product measure of mixed strategies. We propose a family of such selections and
prove existence of an equilibrium that does not depend on the selection. As a
byproduct we show that if finitely additive mixed strategies are allowed, then
Wald's game admits an equilibrium. We also prove existence of equilibria for
nontrivial extensions of matching-pennies and rock-scissors-paper. Finally we
extend the main results to uncountable games