research

Inapproximability of the Partition Function for the Antiferromagnetic Ising and Hard-Core Models

Abstract

Recent inapproximability results of Sly (2010), together with an approximation algorithm presented by Weitz (2006) establish a beautiful picture for the computational complexity of approximating the partition function of the hard-core model. Let λc(TΔ)\lambda_c(T_\Delta) denote the critical activity for the hard-model on the infinite Δ\Delta-regular tree. Weitz presented an FPTAS for the partition function when λ<λc(TΔ)\lambda<\lambda_c(T_\Delta) for graphs with constant maximum degree Δ\Delta. In contrast, Sly showed that for all Δ≥3\Delta\geq 3, there exists ϵΔ>0\epsilon_\Delta>0 such that (unless RP=NP) there is no FPRAS for approximating the partition function on graphs of maximum degree Δ\Delta for activities λ\lambda satisfying λc(TΔ)<λ<λc(TΔ)+ϵΔ\lambda_c(T_\Delta)<\lambda<\lambda_c(T_\Delta)+\epsilon_\Delta. We prove that a similar phenomenon holds for the antiferromagnetic Ising model. Recent results of Li et al. and Sinclair et al. extend Weitz's approach to any 2-spin model, which includes the antiferromagnetic Ising model, to yield an FPTAS for the partition function for all graphs of constant maximum degree Δ\Delta when the parameters of the model lie in the uniqueness regime of the infinite tree TΔT_\Delta. We prove the complementary result that for the antiferrogmanetic Ising model without external field that, unless RP=NP, for all Δ≥3\Delta\geq 3, there is no FPRAS for approximating the partition function on graphs of maximum degree Δ\Delta when the inverse temperature lies in the non-uniqueness regime of the infinite tree TΔT_\Delta. Our results extend to a region of the parameter space for general 2-spin models. Our proof works by relating certain second moment calculations for random Δ\Delta-regular bipartite graphs to the tree recursions used to establish the critical points on the infinite tree.Comment: Journal version (no changes

    Similar works